GmWRKY31 and GmHDL56 Enhances Resistance to Phytophthora sojae by Regulating Defense-Related Gene Expression in Soybean

نویسندگان

  • Sujie Fan
  • Lidong Dong
  • Dan Han
  • Feng Zhang
  • Junjiang Wu
  • Liangyu Jiang
  • Qun Cheng
  • Rongpeng Li
  • Wencheng Lu
  • Fanshan Meng
  • Shuzhen Zhang
  • Pengfei Xu
چکیده

Phytophthora root and stem rot of soybean [Glycine max (L.) Merr.] caused by the oomycete Phytophthora sojae, is a destructive disease worldwide. The molecular mechanism of the soybean response to P. sojae is largely unclear. We report a novel WRKY transcription factor (TF) in soybean, GmWRKY31, in the host response to P. sojae. Overexpression and RNA interference analysis demonstrated that GmWRKY31 enhanced resistance to P. sojae in transgenic soybean plants. GmWRKY31 was targeted to the nucleus, where it bound to the W-box and acted as an activator of gene transcription. Moreover, we determined that GmWRKY31 physically interacted with GmHDL56, which improved resistance to P. sojae in transgenic soybean roots. GmWRKY31 and GmHDL56 shared a common target GmNPR1 which was induced by P. sojae. Overexpression and RNA interference analysis demonstrated that GmNPR1 enhanced resistance to P. sojae in transgenic soybean plants. Several pathogenesis-related (PR) genes were constitutively activated, including GmPR1a, GmPR2, GmPR3, GmPR4, GmPR5a, and GmPR10, in soybean plants overexpressing GmNPR1 transcripts. By contrast, the induction of PR genes was compromised in transgenic GmNPR1-RNAi lines. Taken together, these findings suggested that the interaction between GmWRKY31 and GmHDL56 enhances resistance to P. sojae by regulating defense-related gene expression in soybean.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Soybean ERF Transcription Factor, GmERF113, Increases Resistance to Phytophthora sojae Infection in Soybean

Phytophthora root and stem rot of soybean caused by the oomycete Phytophthora sojae, is a destructive disease worldwide. Ethylene response factors (ERFs) play important roles in regulating plant biotic and abiotic stress tolerance. In this study, a new ERF gene, GmERF113, was isolated from the highly resistant soybean 'Suinong 10.' Sequence analysis suggested that the protein encoded by GmERF11...

متن کامل

Isolation and Characterization of a Novel Pathogenesis-Related Protein Gene (GmPRP) with Induced Expression in Soybean (Glycine max) during Infection with Phytophthora sojae

Pathogenesis-related proteins (PR proteins) play crucial roles in the plant defense system. A novel PRP gene was isolated from highly resistant soybean infected with Phytophthora sojae (P. sojae) and was named GmPRP (GenBank accession number: KM506762). The amino acid sequences of GmPRP showed identities of 74%, 73%, 72% and 69% with PRP proteins from Vitis vinifera, Populus trichocarpa, Citrus...

متن کامل

Spatial and temporal expression analysis of defense-related genes in soybean cultivars with different levels of partial resistance to Phytophthora sojae

The molecular mechanisms and the defense responses associated with partial resistance to Phytophthora sojae in soybean are unknown. In this study, we examined correlations between the expression of defense genes with partial resistance. First, to determine whether constitutive levels of expression of defense-related genes correlated with partial resistance to P. sojae, northern blot analysis of...

متن کامل

A Novel Soybean Dirigent Gene GmDIR22 Contributes to Promotion of Lignan Biosynthesis and Enhances Resistance to Phytophthora sojae

Phytophthora root and stem rot caused by the oomycete pathogen Phytophthora sojae is a destructive disease of soybean worldwide. Plant dirigent proteins (DIR) are proposed to have roles in biosynthesis of either lignan or lignin-like molecules, and are important for defense responses, secondary metabolism, and pathogen resistance. In the present work, a novel DIR gene expressed sequence tag is ...

متن کامل

Overexpression of Soybean Isoflavone Reductase (GmIFR) Enhances Resistance to Phytophthora sojae in Soybean

Isoflavone reductase (IFR) is an enzyme involved in the biosynthetic pathway of isoflavonoid phytoalexin in plants. IFRs are unique to the plant kingdom and are considered to have crucial roles in plant response to various biotic and abiotic environmental stresses. Here, we report the characterization of a novel member of the soybean isoflavone reductase gene family GmIFR. Overexpression of GmI...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017